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Abstract 

Background and aims: The SARS-CoV-2 disease 2019 (COVID-19), whose spread started 

in the late December in 2019 in China, is   the main concern in the world today. Potential 

anti-coronavirus targets can be categorized into two classes depending on the target, one is 

operating on the host immune system or human cells, and the other is on coronavirus itself.  

Anthraquinones are generally extracted from the Polygonaceae family, and have many 

beneficiary characteristics such as being antibacterial, anti-cancer and anti-diabetes.  

Emodin anthraquinones represent an important role in human health and have golden 

healthful features making them a drug to cure many illnesses. The aim of this study was to 

review the inhibiting effect of emodin on cancer and SARS-CoV-2. 

Methods: This comprehensive literature review was performed on papers that have been 

published from 1994 till 2020 in various data resources such as NCBI, Science direct, 

Springer and Web of science. The selected keywords were emodin, medicinal plant, 

anticancer plant and medicinal herbs, cancer and SARS-CoV-2.  

Results: Different studies were found that emodin is known as an effective agent to obstruct 

the interaction of the S protein of SARS-CoV and the host ACE2 (Angiotensin converting 

enzyme 2) and the infection caused by the retrovirus. In addition, the outbreak of cancer in 

patients infected by SARS-CoV-2 (COVID-19) is more than it among the general 

population.  

Conclusion: Therefore, the present research is going to outline and highlight the anti SARS-

CoV-2 therapeutic strategies of emodin and the anti-cancer characteristics’ of this drug. 
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Introcuction 
The SARS-CoV-2 disease 

(COVID-19), whose breakout started in 

the late December in 2019 in Wuhan-

China, is   the main concern in the 

world today. It has had a quick breakout 

across China and then different 

countries 
1, 2

. The virus belongs to the β-

coronavirus family and evolved 

evolutionarily by bats, and then it  was 

transferred to human beings 
3,4

. The 

genome sequence of SARS-CoV-2 

shows 96.2% similarity with SARS-

related coronavirus (SARSr-CoV; 

RaTG13), 79% with SARS-CoV, and 

50% with MERS-CoV 
4,5

. SARS-CoV-

2's receptor is the angiotensin 

converting enzyme II (ACE2) and uses 

a spike protein as an attachment to its 

receptor 
6-8

. It is believed that partial 

spike gene of novel corona virus is 

produced by a pangolin type
9-12

 

coronavirus. SARS-CoV-2 contains a 

positive RNA genome, and it has at 

least four structural proteins: Spike (S) 

protein, envelope (E) protein, 

membrane (M) protein, and 

nucleocapsid (N) protein
12,13

. The 

results of several recent studies have 

represented a correlation between 

cancer and COVID-19
14

. Patients 

suffering from cancer have weaker 

immune systems in comparison with the 

general population both due to the 

nature of the disease and its treatment 

processes. The rates of infection and 

mortality are high among cancer 

patients. Research shows that the 

outbreak of cancer has been more 

among patients infected by SARS-CoV- 

 

 

2 (COVID-19) than among the general 

population 
15

. In China, it is known that 

1% of the patients infected to COVID-

19 have had a history of cancer. Lung 

cancer is the most common cancer 

among these patients while colorectal, 

breast, and bladder cancer, lymphoma, 

papillary thyroid cancer, renal cell 

carcinoma, adrenal carcinoma are in the 

forthcoming ranks 
15

. 

 

Potential anti-coronavirus therapies 

Potential anti-coronavirus targets 

can be categorized into two classes 

depending on the target, one is operating 

on the host immune system or human 

cells, and the other is on coronavirus 

itself 
16

. Regarding human targets, the 

SARS-CoV-2 , similar to SARS virus, 

binds to the angiotensin-converting 

enzyme 2 (ACE2) receptor which is 

expressed abundantly in lung, kidney, 

heart and some other organs 
17

,
18

. The 

virus  uses transmembrane protease, 

serine2 (TMPRSS2) in order to spike 

protein activation. Spike is broken into 

S1 and S2 by TMPRSS2. This plays a 

crucial role in SARS and coronavirus 

infection:therefore, TMPRSS2 could be a 

novel antiviral strategy against coronavirus 

and some influenza viruses 
19-27

. 

Drug Targets for Coronavirus  

The pharmacological targets of 

coronavirus are as follows: 

1-Papain-like proteinase (PLpro) is 

responsible for the production of Nsp1, 

Nsp2 and Nsp3 through an N-terminus 

breakage of the replicase poly-protein.  

These proteins are important  for virus 
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genome replication 
28

. PLpro works as 

an  antagonism of the host’s innate 

immunity 
29-31

.  

2-3C-like main protease (3CLpro or 

Nsp5) is another therapeutic target for 

the novel coronavirus.  This enzyme is 

essentially maturates itself using 

polyproteins and then produces an 

Nsp4–Nsp16 
32

.  

3-RNA-dependent RNA polymerase (RdRp 

or Nsp12) is a very important protein in 

novel virus structure which contains 

Ser-Asp-Asp motif in an active site, and 

its activity is enhanced  through  NSP12 
33, 34

.  

4- Helicase (Nsp13) is utilized for 

separating double-stranded (ds) DNA 

and RNA and contains two domains: 

zinc binding domain located on  N-

terminal, and  a helicase domain 
35

.  

5-Some non-structural proteins which are 

involved in virus RNA synthesis can be 

targets for drug design. In this regard, NSP-

3b, 3e, 7, 9. 10, 14, 15 and NSP7-8 

complexes are candidates of the virus 

inhibition
16

. Structural proteins: Spike is the 

vital structural protein which is important in 

virus interaction to host cell receptors 
36

. 

Spike protein is broken into S1 and S2 by the 

TMPRSS2 which corporate in attachment 

and fusion of virus to host cell 
37

.  

6- Virulence factors of coronavirus: 

Nsp1, Nsp3c and ORF7a are recognized 

as virulence factors. Nsp1 leads to the 

inhibition of producing type-I interferon 

and degradation of mRNA by attaching 

to host 40S ribosomal subunit 
38,39

. 

Nsp3c is involved in resistance of the 

novel virus to host innate immunity. 

The process occurs via attachment of 

this virus to host ADP-ribose 
40

. Bone 

marrow stromal antigen 2 (BST-2 or 

tetherin) is a pre-B-cell growth activator 
41

,
42

, and it  is a marker of type I 

interferon-producing cells (IPC)
43

. 

BST-2 has an antiviral activity which 

diminishes the release of human 

coronavirus 229E (hCoV-229E) and 

many other viruses 
44

. Antiviral activity 

of BST-2 is restricted by ORF7a via 

direct interaction of ORF7a with BST-2 
45

. It has been shown that SARS-CoV 

and other coronaviruses have an open 

reading frame ORF-3a that encodes a 

monovalent cations-permeable channel 

in the infected host cells. The activity of 

this channel affects virus release and it 

entails a higher selectivity of K+ 

compared to Na+ 
46-48

. 

 
Emodin and its beneficiary effects 

on Human Health 

   Anthraquinones are generally 

extracted from the Polygonaceae 

family, such as Rheum palmatum and 

Rheum officinale.  Anthraquinones 

have many beneficiary features such as 

being antibacterial, anti-cancer, anti-

diabetes 
49,50

. Emodin anthraquinones 

(1,3,8-trihydroxy-6-ethylanthraquinone) 

(Fig-1) plays important roles in human 

health and it entails golden healthful 

features making it a drug for the treatment 

of the following illnesses: gallstones, 

inflammation and inflammatory diseases, 

hepatitis 
51,52

. Emodin has been utilized as 

a laxative therapy for many years and 

some laxative mechanisms of emodin are 

as follows: the reduction of  Na+-K+-

ATPase activity in intestinal mucosa, 

inhibition of somatostatin, and enhancing 

the release of acetyl choline 
52

-
54
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.  

Figure1- structure of emodin (55)   

 

 It has been shown that emodin is 

an anti-inflammatory, anti-ulcerogenic, 

anticancer, immunosuppressive, 

antibacterial, antiviral 
56,57

,  

vasorelaxant, and a chemo 

preventive factor 
58

. 
 

Anti-cancer effects of emodin 

Emodin induces apoptosis in a dose- 

dependent manner, and  activates 

caspase-3 
59

 and -9 enzymes 
60

, induces 

p53 protein 
61

, generates reactive oxygen 

species (ROS) 
62

, downregulates 

androgen receptors 
63

, suppresses lipid 

raft coalescence 
64

, inhibits Janus-

activated kinase 2 
65

, and it utilizes some 

apoptotic and anticancer mechanisms in 

various cell types (Fig-2).  

 

 

 

Figure2- Anti-cancer mechanisms of emodin 

 
 

 
 

The Vital Role of Emodin in Novel 

Coronavirus Treatment 

Various studies have demonstrated 

four drug targets of Emodin in 

inhibiting the coronavirus. This 

compound is a potent inhibitor of the 3a 

ion channel (Fig-3). Inhibition of this 

channel can counteract the release of  

the virus. The reduction of  extracellular 

 
viral RNA copied by emodin is an 

evidence of inhibition of the virus 

release. This drug leads to decrease 

intracellular scripts of the virus ‘RNA’ 

in the presence of high concentrations. 

This indicates that emodin can inhibit 

other stages of the virus' life cycle at 

higher concentrations 
66, 67

. Another 
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mechanism of emodin  in inhibiting the 

coronavirus is approved regarding 

SARS-Cov by blocking the virus 

binding to its receptor, the angiotensin-

converting enzyme 
68

. The binding of 

the S protein to ACE2 is inhibited in 

200 μM of emodin and 80% inhibition 

is achieved in 50 μM dosage 
65

. Also 

emodin is a strong inhibitor of the 3a 

channel in about 20 M 
66

.   

Still another emodin treatment 

strategy is inhibition of the 3C like 

protease (3CLpro) enzyme in novel 

virus which automatically cleaves 

polyproteins to produce mature 

enzymes, and its cleavage site is the 

downstream area of the non-structural 

protein leading to release the non-

structural protein NSP4-NSP16s. As a 

result, this enzyme is involved in the 

maturation of non-structural proteins 

and therefore; it  is considered as an 

essential enzyme for the viral life cycle 

to be utilized as a new drug target 
69

.  

It has been shown that when 

3CLpro enzyme is inhibited, the 

replication of the SARS-cov virus in the 

host cell is inhibited 
70

,  and emodin 

leads to the inhibition of this enzyme 

which  is  present in Covid-19 virus 

structure 
69-71

. It has been shown that 

Aloe emodin (1,8-dihydroxy-3-

(hydroxymethyl) anthraquinone) is a 

another type of emodin which is present 

in aloe latex, in dose-dependently 

manner inhibited cleavage activity of 

the SARS coronavirus 3CLpro, in cell-

free (the IC50 values were 132μM), and 

in cell-based assays 
72

. 

Emodin inhibit the Janus-activated 

kinase-2 enzyme and the JAK2 / 

STAT3 signaling pathways induced by 

interleukin-6 
65

. Furthermore, it leads to 

the inhibition of the cytokine storm 

because the release of interleukin-6 

releases other cytokines, resulting in 

inflammatory storms and the death of 

the infected patients
73

. It is worth 

mentioning that there are at least 36 IL-

6 inhibitors which only two of them are 

monoclonal antibodies: Tocilizumab 

and Sarilumab, approved by the FAD. It 

has been shown that dietary Emodin has 

antioxidant properties and reduces 

oxidative damage to organs 
74

. 
 

Side effects of emodin: 

 Emodin also has some side effects, 

if it is consumed in high dosages for a 

long period of time. In this regard, 

genotoxic effects of emodin are reported 

in some studies
75

. Furthermore, Emodin 

is carcinogen in rodents, and leads to 

cancer in some animals. Others studies 

have rejected the results of the 

carcinogenicity of emodin
76

-
79

. 

However, evaluating the genotoxity 

profile of emodin did not show any 

concerns on its genotoxity in humans 
79

. 

Because emodin is a potent inhibitor of 

cytochrome P4501A1, and most pro-

oncogen compounds need to be activated 

by detoxifying enzymes, emodin has 

been shown to inhibit this protein and 

thus counteracts the mutating effects of 

P4501A1. According to the above 

sources 
80

 , the lack of genotoxicity of 

emodin in humans is supported.  
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Figure 3 - Anti SARS-CoV -2 mechanisms of emodin 

 

 

Conclusion  

Emodin may operate as an antiviral 

drug by obstructing virus infection and 

its release. In addition, it shows 

anticancer effects using various 

mechanisms. Hence, emodin may open 

the horizons to novel therapeutics in 

treatment of coronaviruses. It can be 

considered as a basis for drug 

development against coronavirus 

infections and various cancers. 
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